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Energy transport at  Rayleigh numbers up to 675 times the critical (linear stability 
theory) value is measured in a layer of dilute electrolyte bounded horizontally by 
two rigid planes of constant and equal temperature; Joule heating by an alter- 
nating current passing horizontally through the layer provides the volumetric 
energy source. Horizontally averaged temperature profiles are determined opti- 
cally. Mean temperature distributions are asymmetric at  elevated Rayleigh 
numbers, the energy transport at the upper boundary being more than twice 
that at  the lower boundary. Three regimes of flow are identified and discrete 
transitions in the energy transport appear to exist when the flow is turbulent. 
Extrapolation of the data to the conduction value of the Nusselt number yields a 
critical Rayleigh number which is within + 10.7 % of linear theory values. No 
subcritical convection is observed when finite amplitude disturbances are 
introduced into the fluid at a Rayleigh number between the critical values 
predicted by the linear stability theory and energy theory respectively. 

1. Introduction 
An initially quiescent fluid layer can be brought to a state of internal convective 

motion if a sufficient imbalance exists between buoyant forces tending to dis- 
place fluid elements and restraining viscous forces. In thermal convection, buoy- 
ant forces due to density differences can be produced by differential warming of 
the fluid at  its horizontal boundaries or by warming of the fluid from within. 
The ratio of the buoyant forces to the viscous forces times the ratio of the heat 
convected to the heat dissipated by conduction is the characteristic dimension- 
less group for such systems and is expressed as the Rayleigh number 

Ra = (g,!?/av) AT*L*3, 

where AT* is the characteristic (destabilizing) temperature difference within the 
layer and L* is a characteristic length scale for the layer, generally corresponding 
to the depth of the portion of the layer in unstable equilibrium. The constants g, 
,!?, a and Y are, respectively, the gravitational acceleration, the isobaric coeffi- 
cient of thermal expansion, the thermal diffusivity and the kinematic 
viscosity. 



272 P. A .  Kulacki and R. J .  Goldstein 

Relatively meagre treatment has been given to thermal convection in fluid 
layers warmed internally by distributed energy sources. In this case, a nonlinear 
mean temperature or density field in the conduction state preceding the onset 
of motion is responsible for destabilizing buoyant forces. Thermal convection 
with internally distributed energy sources has been proposed as a mechanism 
for the outer regions of stellar interiors by Bethe (1968) and has been considered 
in connexion with earth-mantle convection by Runcorn (1962), Tozer (1966) 
andKnopoff (1967). 

Several experimental studies on thermal convection in internally heated 
layers already exist. The works of French (1968), Tritton & Zarraga (1967) 
and Schwiderski & Schwab (1971) were largely qualitative investigations of 
the overall nature and character of the fluid motion in the immediate post- 
stability regime or for moderately elevated Rayleigh numbers. Drawing the 
results of these studies together, it may be concluded that for RafRa, < 80 
(where Rac is the linear theory critical Ra)  the flow exhibits a cellular planform 
with downflow in the centre of the cells (counter to that of BBnard convection in 
liquids). It was found also that the cell orientation and shape reach only a quasi- 
stationary state for all Ra up to 80Rac, but above this value local turbulent 
motion was observed. 

In the research reported here, thermal convective phenomena in a horizontal 
fluid layer supporting a uniform (positive) volumetric energy source has been 
considered. The initial flow instability, the nature of the flow and mean tempera- 
ture fields in the post-stability regimes, and the heat transport within the layer 
and at its boundaries have been investigated experimentally. A Mach-Zehnder 
interferometer was employed to measure the temperature distribution within a 
layer of dilute aqueous silver nitrate bounded by two rigid isothermal horizontal 
plane walls maintained at equal temperatures. Joule heating of the electrolyte 
with a 60 Hz alternating current provided the volumetric energy source. 

With the given experimental design, the Rayleigh number is appropriately 
expressed in terms of the strength of the volumetric energy source; S = HfpC, 
where H is the unit volumetric rate of energy production. AT" is set equal to 
SL2/8a, the maximum temperature difference which would occur in the layer 
with purely conductive energy transport to the boundaries. Even a t  large R a  
this temperature difference is physically significant since it relates the charac- 
teristic parameter of the system to a known, measurable quantity, the power 
input. The length scale L* is chosen as +L, the half-layer thickness, to correspond 
to this temperature difference (under stable no-flow conditions). Thus, the 
Rayleigh number is given by 

2. Apparatus and instrumentation 
The Mach-Zehnder Interferometer of the Heat Transfer Laboratory at  the 

University of Minnesota was used to obtain quantitative information on hori- 
zontally averaged temperatures in the layer. A review of the interferometric 
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technique for studying heat transfer in fluids has been given by Goldstein (1968) 
and its applicability to volume heating studies in liquids was demonstrated by 
Novotny (1963) and Wilkie & Fisher (1963). 

With a liquid as the heat transport medium, an approximation assuming small 
temperature differences in the fluid relates the horizontally averaged tempera- 
ture difference in the fluid layer to the interference field by 

€ A 0  

X IdnldT 1 ’ T-T,= 

where T, is the temperature of the horizontal boundaries of the layer, A, is the 
wavelength of the light source in the interferometer, X is the length of liquid 
along the light beam and dn/dT is the derivative of the index of refraction of the 
liquid evaluated at  T!. 8, the ‘fringe shift ), is the optical path length difference 
in vacuum wavelengths between the two beams of the interferometer relative to 
that of a light ray passing immediately adjacent to the boundary. 

If the interferometer is adjusted to give wedge or ‘finite fringes’, a series of 
light and dark bands are formed at the focal plane in the interferometer. When 
there are no initial temperature differences in the liquid these fringes can be 
aligned with a vertical reference (e.g. a plumb line). With temperature variation 
in the liquid, the fringes deviate from the vertical (figure 4, plate 1); the number 
of fringes crossing the plumb line (i.e. the fringe shift) is proportional to the tem- 
perature difference. Equation (1) expresses this relation and is valid at any cross- 
section in the light beam passing through the fluid. Refraction and edge effects 
are neglected in (1) but may be corrected on a systematic basis (Goldstein 1968; 
Novotny 1963). The temperature data given in this paper were corrected for 
such optical effects (Kulacki 1971). 

If the optical components of the interferometer are adjusted so that a single 
fringe occupies the entire field of view at the focal plane, the ‘infinite fringe’ 
adjustment is obtained. The number of interference fringes which form when 
the fluid is no longer isothermal is also related to the temperature difference by 
(1). In  the present study, the infinite fringe adjustment is better suited to qualita- 
tive visualization of the horizontally averaged temperature fields while finite 
fringes are used for most of the quantitative tests. A single fringe or fringe shift 
is equivalent to a temperature difference of approximately 0.02 “C in the present 
study. 

The convection chamber comprised a fluid layer of dilute (0.02 molar or less) 
aqueous silver nitrate solution of varying depths (1-27-6.35 cm) bounded above 
and belowbytwocopperplateseach 254cm square and 2.40 cm thick. Thesurfaces 
of the plates in contact with the fluid layer were ground flat to k 0.00127 ern and 
were electrically and chemically insulated from the silver nitrate solution by a 
0-05 mm film of Mylar. Two side walls had optical windows ground to a wave- 
length flatness on both sides. The thickness of the optical windows was sufficient 
to keep distortion due to the maximum hydrostatic loading by the layer of liquid 
to less than 0-10 wavelength. The other two walls were of Plexiglas and each 
displaced 1.27cm from the copper plates. Each of these two Plexiglas walls 
contained a 0.635 cm thick silver-plated copper flat which served as an electrode 
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FIGURE 1. Convection chamber. 0.127 cm < L < 6.352 cm. 

for the passage of electric current through the layer. Four 1.27cm diameter 
Plexiglas rods were used to separate the upper and lower boundaries of the layer. 
The lengths of the rods were varied to form layers of different depths. In  all 
the experiments, the horizontal and vertical dimensions of the electrodes were 
equal to the length and depth of the layer respectively. As the layer depth was 
varied, electrodes with a vertical dimension equal to the layer depth were inserted 
into the side walls of the convection chamber. A 5.08 cm thick layer of urethane 
foam for insulation completely surrounded the chamber during the experiments. 
A simplified schematic diagram of the convection chamber is given in figure 1. 

The temperatures of the upper and lower boundaries of the layer were held 
constant with thermostatically controlled water circulating through a double- 
spiral channel brass plate bolted to the back of each copper plate. A gasket of 
Teflon film 25.4 x 25.4 x 0.00254 cm between the brass and copper prevented 
leakage. The brass plates were each 2.54 cm thick and were machined with twenty- 
two channels of 1-27 cm depth. Water was supplied to the channels from a bath 
with a pumping capacity large enough to allow both the upper and lower channel- 
led plates to be operated in parallel. Temperature control was accurate to within 
0.01 "C with regulation of less than 0.04 "C. In  practice, small fluctuations in bath 
temperature produced no measurable changes in the temperatures of the copper 
plates. 

Nine 30-gauge iron-constantan thermocouples were used to monitor the tem- 
peratures of each of the copper plates. The thermocouple wells in the plates were 
drilled to within 0.038 em of the surface in contact with the test fluid and each 
thermocouple was electrically insulated from the copper plate by a casing of 
copper oxide cement in its well. The thermocouples were placed symmetrically 
about the centre-lines of the plates in rows of three, each 7.72 cm apart. Each 
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thermocouple e.m.f. output was measured with a Honeywell 'Electronik 15' 
self-balancing potentiometer. Readings could be made to within 0-001 mV 
(0.019 "C) with an accuracy of 0.002 mV (0.039 "C). Horizontal temperature 
gradients in the copper plates could not be detected during any of the experi- 
ments. 

The convection chamber was operated as an electrochemical cell formed by the 
silver and silver ion in solution at a constant applied voltage. Applied voltages 
were 35V or less and the total consumed power was 4.7 W or less in experiments 
where quantitative temperature data was desired. Electrical power was supplied 
from line voltage at 60Hz through a voltage regulator and variable transformer. 
Power dissipated in the fluid was measured with a wattmeter of $ yo rated accu- 
racy. 

Electromagnetic side effects of the applied alternating electric field were found 
to be negligible. The disturbance of the induced magnetic field in a half-period 
had a diffusion length of approximately 1OOm. The magnetic Reynolds number 
of the fluid was approximately lo-*. 

3. Experimental procedure 
Before each experiment, the interferometer was aligned with the test section 

once the copper plates and fluid layer were in thermal equilibrium at a tempera- 
ture 0.5 "C below room temperature. The plates were to be held at  this temper- 
ature during the experiment in an attempt to minimize heat losses. Wedge 
fringes were then obtained and aligned with a plumb line to ensure that they 
were vertical. Since the two plates bounding the layer could not be made 
perfectly parallel, the inclination of the light beam was adjusted to minimize the 
refractive bending of fringes at both surfaces. During the experiments, refraction 
and reflexion effects at  each boundary produced a zone of 'no information' larger 
than that due to misalignment. 

When the alignment procedure had been completed, a camera was focused on 
small Plexiglas pins (in some cases a single pin was used) positioned on the lower 
boundary a t  the centre of the layer. A photograph of these 'scale pins' served to 
determine the boundaries of the layer on the interferograms and to  relate dis- 
tance on the interferogram to actual distance in the layer. 

After the scale pins had been photographed power was applied to the system, 
A period of time sufficient for the development of the convective motion was 
then allowed to elapse before recording an interferogram. Estimates of flow 
development times for various layer depths were made on the basis of the time 
required for attainment of a steady one-dimensional temperature distribution in 
the fluid for pure conduction. In  practice, interferograms at  smaller plate spac- 
ings (low Ra) were recorded after a one to one and a half hour period and those 
at larger plate spacings (high Ra) after 2-3 h. In both cases, the allowed flow 
development times were larger than that required for development of the conduc- 
tion temperature distribution. 

Interferograms were recorded with a 35 mm camera focused at  the midplane 
of the layer at  1 s or at  15 s exposures. Longer time exposures were attempted, but 
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subsequent analysis of these interferograms showed no significant increase in 
either precision or accuracy of the final energy transport results over that of the 
short time exposure results. Both local fluctuations and large-scale translations 
of the fringe field produced wedge fringes of generally poor definition when very 
long time exposures were used. Thus the interferograms shown in this paper 
were obtained from 1 and 15 s exposure interferograms and should be regarded as 
only horizontally averaged (i,e. along the light beam). No distinction is made be- 
tween data obtained from the interferograms at the two different time exposures. 

Temperature gradients at  the layer boundaries were computed from direct 
measurements of fringe gradients corrected for volume heating in the fluid. 
Very close to the wall, the energy transport was governed largely by one-dimen- 
sional heat conduction : 

where z is the vertical co-ordinate in the fluid layer. Integration of (2) gives for 
the temperature gradient at  the wall: 

d2T/dz2  = -XI., (2) 

The last term on the right-hand side in (3) is the correction for volume heating. 
The gradient [dT/dx] ,  was computed with a three-point derivative from an inter- 
polating parabola fit through the three fringe shifts closest to the wall. This 
formulation was less sensitive to small errors in reading fringe shift data near the 
wall than a simple two-point derivative. The thermal diffusivity in (3) was evalu- 
ated at  the average wall temperature since the three fringe shift values closest t o  
the wall were typically within 1 mm of the wall. 

4. Energy transport results 
The striking feature of the convective flow at supercritical Ra is the dominating 

influence of buoyancy on the warm central region of the layer (see figures 4-8, 
plates 1-4). With Ra only slightly above the linear theory critical value of 560 
($6),  the region where the maximum temperature occurs is above the geometric 
centre of the layer; the mean temperature distribution is asymmetrical and 
markedly different rates of energy transport occur at the two boundaries of the 
layer. An average Nusselt number must then be determined for each of the bound- 
aries. 

The Nusselt number is defined using the entire layer depth L as the charac- 
teristic length dimension and the maximum measured temperature difference 

At each Ra, an average Nu for the upper and lower surfaces was computed 
using a number of temperature profiles over the central region of an interfero- 
gram. This was equivalent to averaging the energy transport over the central 
5 cm of the layer. The mean value, absolute variation (in the horizontal direction 
across the light beam) and standard error of the mean value of Nu are given in 
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FIGURE 2. Dimensionless energy-transport data and correlations. 
--a-, Nul = 0.879Ra@as6; ---A-, N u  0 -  - 2-111RaaOB4. 

table 1. Average values of Nu correlated well with all supercritical Ra, assuming 
a relation of the form 

At  the upper boundary 
Nu = CRa". (5) 

N u  1- - 0-879Ra0236~O~003, 580 < Ra < 3.78 x 105, 

5-76 < Pr < 6-35, 0-05 < ( L / X )  < 0.25, ] (6) 
r = 0.994 from 67 observations, 

and at  the lower boundary 

} (7) 
Nu 0 -  - 2~iliRa0'094*0'002, 

0.05 < ( L / X )  < 0.25, 

580 < Ra < 3.78 x lo5, 5-76 < Pr < 6-35, 

r = 0.978 from 67 observations, 

where Pr = v/a and r is the correlation coefficient. These correlations and the 
experimental data are summarized in figure 2. No significant reduction in the 
error sum of squares of the regression of Nu on Ra could be obtained by including 
either Pr or the layer aspect ratio L / X  in the correlation. The fraction of the total 
energy dissipation removed at  the upper boundary of the layer, Nu,/(Nu, +Nu,), 
is given in figure 3. 

The data are almost as well represented (compare coefficients of correlation) 
by (5), assuming m = 0-25 and rn = 0.10 for the upper and lower boundary re- 
spectively. A least-squares fit of the data in these cases gives for the upper 
boundary 

Nu, = (0.756 & 0 . 0 0 5 ) R ~ 0 ~ ~  580 < Ra < 3.78 x lo5, 5-76 < Pr < 6.35, 

0.05 Q ( L / X )  < 0.25, r = 0.990 from 67 observations, 
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0 

0.4 
10’ 103 1 0 4  105 I06 

Ra 

FIGURE 3. Fraction of energy transport at the upper boundary. 

and at  the lower boundary, 

Nu, = (2.006 O.O1O)RaO’lO, 580 < Ra 6 3-78 x 105, 5-76 < Pr < 6.35, 

0.05 < ( L / X )  6 0.25, r = 0.974 from67 observations. 

Additional correlations of the data are given in the appendix. 
The measured energy transport at  the system boundaries was, on the average, 

consistent with the fraction of power input associated with the volume of the 
fluid contained between the copper plates. It was assumed that the energy pro- 
duction in the fluid next to the electrodes (each being displaced 1.27 cm from the 
edges of the copper plates) did not affect the convective transport in the centre of 
the layer. An energy balance for the system was defined as BF = (total heat 
transport measured at  the horizontal boundaries)/(electrical energy input be- 
tween the copper plates). A check on experimental consistency from run to run 
(e.g. when the layer depth was increased) and on the internal consistency with a 
given run was thus possible. For low Ra (small layer depths) BF z 1; but for 
Ra > 7 x lo3, BF sometimes exceeded one. (Values of BF are given in table 1.) 
This indicated that advection was perhaps significant at  larger plate separations. 
The overall one-dimensionality of the transport process could thus be questioned 
at the higher Ra. The correlations for energy transport presented here, however, 
include all the data regardless of the BF value associated with a given experiment. 
The N u  associated with the values of BF =+ 1 did not deviate significantly from 
either the overall trend in the energy transport or the computed correlations of 
Nu with Ra for either boundary, equations ( 6 )  and (7).  

The possibility that discrete transitions might exist in the energy transport 
at the boundaries was investigated in view of the occurrence of such transitions 
for thermal convection with heating from below (Malkus 1954; Willis & Deardorff 
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i 
0 0.2 0.4 0.6 0.8 1.0 

T - T,/t(SLZ/2a) 

FIGURE 9. Dimensionless mean temperature distribution for conduction. Ra = 391-1, 
L = 1.27 cm, fSLZ/2a = 0.072 "C. -, theoretical conduction profile. 

1967; Krishnamurti 1970). A linear plot of Nu. Raversus Ra didreveal the exis- 
tence of linear segments in the energy transport. However, transition values of 
Ra could not be defined with great precision. Furthermore, the apparent linear 
segments in the respective plots for the upper and lower boundaries were not 
strictly delimited by the same transition Ra. At the upper boundary, transition 
Ra were estimated to be 12 000, 92 000 and 195 000. For the lower boundary 
transition Ra were observed at  20 000 and 190 000. Transition points at  lower 
Ra were not discernable with the present data. 

5. Mean temperature profiles 
Wedge fringe interferograms formed the basis of the energy transport measure- 

ments and are shown in figures 4-8 (plates 1-4) for selected values of Ra. Several 
spatially averaged temperature distributions (averaged both in the direction of 
the light beam and across the light beam over the central 5 cm of the layer) are 
presented in figures 9 and 10 for selected values of Ra covering the range of the 
data. The reduced temperature distribution near the upper boundary plotted 
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as a function of the thermal boundary-layer thickness 6 (defined as S = L/Nu) 
is shown in figure 11. The solid curve in figure I1 is the least-squares curve for 
similarly reduced temperature data near the lower boundary. 

A number of distinct features of low and high Ra convection were identified 
from the fringe field. In general, overall buoyant forces acting on the warm 
central core of the layer displace this region upwards, above the geometric centre 
of the layer (figure 13, plate 7). For Ra 2 2642 the asymmetric nature of the mean 
temperature distribution appears fully developed and this asymmetry becomes 
more pronounced as Ra is increased. A quasi-periodic motion, viewed as a hori- 
zontal average in the direction of the light beam, dominates the regime Ra < lo4. 
Separations between individual isothermal regions (enclosed by a single fringe 
as in figure 13) are apparently downdraft sites for cold flows from the upper 
boundary or upflow channels for entrained warm fluid from the central regions 
of the layer. (Updrafts in the sense of plume-type flows from the cooled lower 
boundary are prohibited by the positive mean temperature gradients in the 
lower portion of the layer.) A motion-picture study shows that variations in the 
spacing between wedge fringes for Ra M 5000 correspond to separations between 
individual isothermal regions. They are more or less periodic (as are the individual 
isothermal regions) across the field of view but are not stationary. 
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FIGURE 10. Dimensionless mean temperature distribution for natural convection. 
(a )  Ra = 5469, L = 2.539 cm, 4SLZ/2a = 0.122 "C. (5) Ra = 1.582 x lo4, L = 3.176 cm, 
+SLz/Za = 0.193 "C. (c) Ra = 6.320 x 104, L = 5.079 cm, @'L2/2a = 0.173 "C. ( d )  Ra = 
2.738 x lo5, L = 5.079 cm, $SL2 /2a  = 0.549 "C. 

For Ra > lo4, turbulent mixing effects begin to play the dominant role in the 
overall energy transport process, and any periodicity or near periodicity in the 
mean temperature fields evident at lower Ra begins to  disappear. Turbulent 
convection is characterized by a well-mixed isothermal core (figure 10(d)) and 
the downward release of cold thermals from the edge of the thermal boundary 
layer at the upper surface. Figures 12 (a) ,  (b )  and (c) (plates 5 and 6) show the 
release of a thermal from the upper boundary at  R a  = 1.27 x los. The release of 
thermals from the upper boundary is a random process and appears in wedge 
fringe interferograms as randomly occurring waves travelling downward along 
one or several fringes. This is shown in figure 8 (plate 4) by the deformation of 
the fringes near the centre of the layer. Motion pictures of the turbulence reveal 
that downward-travelling thermals are sometimes able to maintain their 'thermal 
identity' until they reach the boundary layer a t  the lower surface. 

Summarizing the observation of mean temperature fields it is possible to 
postulate the following approximate regimes of motion: (a )  gentle laminar con- 
vection for Ra, < Ra < 5 x lo3, where conduction is still a relatively important 
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( L  - .,/a 

FIGURE 11. Reduced mean temperature near the upper boundary for turbulent convection. 

4 * 0 0 A 
R a x  1 0 - 4  2.909 3.098 3.632 4.199 6.320 10.25 12.72 

0 v D 4 0 A 
R a x  14.98 16.78 20-19 22.23 24.87 27.38 37.85 

mechanism for energy transport throughout the entire layer, (b )  developed lam- 
inar convection for 5 x lo3 < Ra < lo4 and (c) transition to turbulent convection 
for Ra > lo5. 

6. Laminar convection and stability observations 
In figure 13 (plate 7), time-sequence interferograms are presented for developed 

convection with the infinite fringe setting of the interferometer. Though it was 
found difficult to maintain the original truly infinite fringe adjustment through- 
out the period of each of the experiments (about three-quarters of a fringe net 
difference existed across the layer and produced fringes not exactly parallel 
to the layer boundaries), the interferograms are nevertheless qualitatively 
accurate visualizations of the thermo-fluid dynamic process within the layer. 

Time-sequence interferograms at  several Ra and motion pictures of laminar 
convection with the infinite fringe adjustment suggests a process of growth, 
coalescence and breakup of individual isothermal regions as a spatially and 
temporally irregular succession of events. In  general, isothermal regions of large 
horizonal extent tend to absorb regions of smaller horizontal extent. If, however, 
an individual isothermal region becomes too large in horizontal extent, it 
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- 
RalRa, L 

Ra Pr (Ra,=560) (em) zc/L Z C Z  &L. mex dcL 

1590 5.96 2.84 1.429 0.60 0.335 0.60-2.0 1.1 
2995 5.96 5.35 1.429 0.66 0.244 0.40-1.4 0.8 
5390 5.94 9.63 1.429 0.70 0.210 0.20-1.6 0.6 

TABLE 2. Approximate dimensions and location relative t o  layer depth of regions of con- 
stant temperature in laminar convection with the infinite fringe adjustment of the inter- 
ferometer. 

/ /  , , ,,,,, , , , , I , , ,  I I 

FIGURE 14. Sketch of notation used in table 2. 

becomes unstable to flow disturbances (probably with the development of cold 
downflows) near the upper boundary and breaks apart to form a number of 
smaller isothermal regions. The breakup process begins as a local neoking-down 
of the isothermal region as if it  were being pulled in opposite horizontal directions 
at each end. The overall pattern of the isothermal regions in the centre of the 
layer is indicative of a cellular flow. Motion pictures reveal that these regions 
are neither truly periodic nor stationary. Once an isothermal region appears in 
the layer, it grows in both vertical and horizontal extent, the growth rate being 
roughly proportional to Ra. The vertical extent is limited to a fraction of the layer 
depth, which decreases as Ra increases. The horizontal extent varies about a 
mean value which also decreases with increasing Ra. Quantitative information on 
these features of the flow for three Ra values is presented in table 2 (see figure 14 
for notation). These data were derived from discrete measurements using a limited 
number of interferograms for each Ra. 

The correlation of the upper boundary Nusselt number, see (6), was chosen to 
estimate Ra,. The lower boundary Nusselt number correlation was not used since 
some measured Nu, values for Ra < 1000 drop below 4.0 and because a slight 
change in the Ra exponent in the correlation could produce large changes in the 
estimated Ra,. By extrapolating ( 6 )  to the theoretical pure conduction value 
Nu, = 4.0, a critical Ra of 620 rf: 30 was obtained. 

Por a comparison of existing theoretical predictions of Ru, (Kulacki 1971) 
with the above-measured value, it is necessary to take into account the thermal 
coupling between the layer and its environment. This coupling is expressed 
theoretically by the Biot number Bi. For the convection chamber an equivalent 
Biot number Bi+ is defined as the ratio of the thermal conductance of the bound- 
ing wall to that of the fluid layer: Bi+ = (kw/Lw)/(kf/L), where the conductance of 
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the wall is obtained from the additive thermal resistance concept for a composite 
wall. The terms k,, L,, and k, are, respectively, the effective thermal conductivity 
of the wall, the total thickness of the layer boundary, and the thermal conduc- 
tivity of the fluid. Using nominal values from the literature for the material 
properties of the layer boundaries, we findthat Bi+ = 47.5( 1 F 0.15). At this value 
of Bi and for symmetrical thermal boundary conditions, the linear theory stability 
limit is Ra, = 560 while the energy theory limit is Zc = 292 (Kulacki 1971). 

The possibility of convection at R a  < 560 was investigated qualitatively by 
introducing large-size random disturbances into the layer at Ra = 485. A glass 
rod was inserted into the layer at one edge of the system: stirring with large back- 
and-forth motions was then performed for periods of several minutes. During the 
stirring, the maximum temperature in the layer was reduced to approximately 
one-third of its value before stirring. The temperature distribution (i.e. wedge 
fringe field) returned to its original form about ten to fifteen minutes after stirring 
stopped. A comparison of interferograms before and after stirring showed no 
measurable difference between the maximum temperatures (maximum fringe 
shifts) in the layer and temperature gradients (fringe slopes) a t  the layer bound- 
aries. 

7. Error estimates 
Systematic errors in wall temperature gradients arising from refraction of the 

light rays in the cooled boundary layers on the upper and lower copper plates were 
corrected with formulae which take into account the optical averaging property 
of the interferometer (Goldstein 1968, Kulacki 1971). The combined uncertain- 
ties in the thermophysical properties, geometrical factors and wattmeter read- 
ings produced an experimental uncertainty of 2-3 % in Ra. The temperature 
variation of the electrioal conductivity of the electrolyte was neglected since the 
concentration of silver nitrate was low (0.02 molar) and maximum temperature 
differences in the fluid were of the order of 0-5 "C or less. Thus the total power con- 
sumed in the convection cell was taken directly from the wattmeter readings. The 
total experimental uncertainty in the computed values of N a  ranged from 
5 3-2 to 6.5 %. 

The research reported here was supported by National Science Foundation 
Grants GK 1737 and GK 15252. The award of a NSF Traineeship to F.A. Kulacki 
is appreciated. 

Appendix 
Additional correlations for the energy transport were computed over a reduced 

range of Ra for which the trends in the energy transport at  each of the boundaries 
were clearly established. In  the form of ( 5 ) ,  the results were 

NU, = 0 * 9 5 9 R ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,  1104 < RU < 3.78 x lo5, 0.075 < ( L / X )  < 0.25, 

5.76 6 Pr < 6.09, r = 0.991 from 47 observations 
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and 

Nu 0 -  - 2.089Ra0'095*0'004, 1104 Q Ra Q 3.78 x 105, 0.075 < ( L / X )  < 0.25, 

5.76 < Pr < 6.09, r = 0.963 from 47 observations. 

A correlation of the form 
(Nu - 4) = G(Ra - RaJm 

was also computed for all measured Nu greater than the theoretical pure con- 
duction value of 4.0. For the upper boundary 

(Nu,- 4 )  = 0.037(Ra- 560)@46a+o~oz6, 703 Q Ra < 3.78 x lo5, 

0.062 Q ( L / X )  < 0.25, 

and at  the lower boundary 

5-76 Q Pr Q 6.35, r = 0.934 from 48 observations 

(Nu, - 4 )  = 0.0097(Ra - 560)0483*0003, 703 < Ra < 3.78 x lo5, 

0.062 < (L /X)  < 0.25, 5-76  Q Pr < 6.35, r = 0.919 from 48 observations. 

No significant reduction in the error sum of squares of the regression of Nu 
on Ra could be achieved by including the Prandtl number or layer aspect ratio. 
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FIGURE 13. Time-soqucncc interfcrograrns at  60 s intervals with 
iiifiriit<' fringe adjristrnriit. Ra = 53'10. 
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